

## The Silent Contaminants: Plastic Pollution and Microplastics as Emerging Threats to Fisheries and Human Well-Being

*Sunil Kumar<sup>1</sup>, Monika Singh<sup>2</sup>*

<sup>1</sup>Indian Institute of Technology, Mandi

<sup>2</sup>Department of Biosciences, Himachal Pradesh University, Shimla

### ABSTRACT

Plastic pollution and the rapid proliferation of microplastics have emerged as critical environmental threats with far-reaching implications for marine ecosystems, global fisheries, and human well-being. With over 350 million tonnes of plastic produced annually, inadequate waste management, fisheries-related activities, and degradation of larger plastic debris have accelerated the infiltration of microplastic particles smaller than 5 mm into virtually all aquatic habitats. Their persistence, chemical stability, and ability to transport hazardous contaminants, including heavy metals, PAHs, antibiotics, and persistent organic pollutants, intensify ecological risks as they bioaccumulate and bio magnify throughout marine food webs. Fisheries face substantial impacts, such as impaired feeding, reduced growth and reproductive success, and increased mortality in fish populations that ingest microplastics. These effects compromise seafood quality and safety, subsequently heightening risks to human health. Emerging evidence demonstrates that microplastics are now present in drinking water, salt, atmospheric fallout, and commonly consumed seafood, posing potential threats through oxidative stress, endocrine disruption, immune impairment, developmental toxicity, and carcinogenic pathways. As microplastic contamination continues to escalate, it represents not only an environmental crisis but also an urgent public health concern. This underscores the critical need for improved waste management, strengthened policy frameworks, and enhanced global awareness to mitigate plastic pollution, safeguard fisheries, and protect human health.

**Keywords:** Microplastic Pollution, Fisheries Sustainability, Marine Ecosystem Health, Seafood Contamination, Human Health Risks

### 1. Introduction

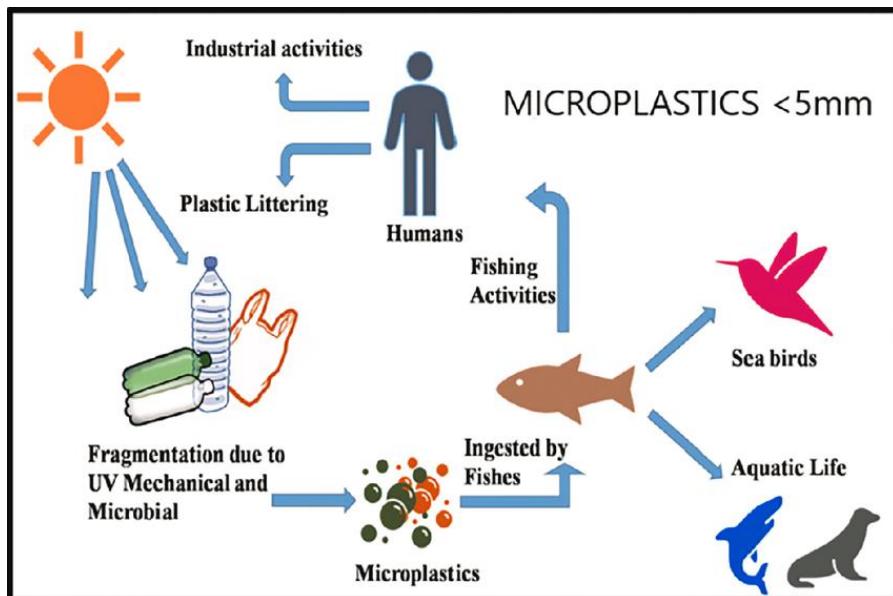
Marine environments, fisheries, and ultimately human well-being are at risk due to the escalating global ecological crisis caused by plastic pollution. Every year, more than 350 million tonnes of plastic are produced, much of which finds its way into aquatic ecosystems through fishing, urban runoff, poor waste management, and the breakdown of larger plastic debris (Wright & Kelly, 2017). Microplastics, or particles smaller than 5 mm, are created when these plastics break apart. Because of their chemical stability and resistance to biodegradation, these particles can last for decades (Rochman et al., 2015). Microplastics are almost impossible to remove due to their size, buoyancy, and widespread distribution. They have penetrated every level of the marine environment, from deep-sea sediments to coastal waters (Yu & Singh, 2023).

Fisheries are severely impacted when microplastics infiltrate marine food webs. Many fish species confuse microplastics for prey, which can result in ingestion that obstructs the digestive tract, decreases feeding efficiency, depletes energy, stunts growth, causes problems with reproduction, and increases mortality (Smith et al., 2024). Hill fisheries face multiple threats arising from both natural and anthropogenic factors (Singh, 2025). More importantly, microplastics act as carriers of dangerous pollutants that stick to their surfaces, such as heavy metals, antibiotics, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) (Wright & Kelly, 2017). After being consumed by fish, these contaminants bioaccumulate in their tissues and bio magnify throughout trophic levels, endangering fish health and lowering the quality and safety of seafood that is harvested for human consumption (Rochman et al., 2015).

The consequences for human health are becoming more concerning. Drinking water, salt, atmospheric fallout, and frequently eaten fish and shellfish have all been found to contain microplastics (Smith et al., 2024). Because microplastics can cross intestinal barriers, cause oxidative stress, impair immune function, change endocrine activity, and possibly build up in important organs, human exposure through seafood consumption is especially concerning (Johnson & Thompson, 2022). Additionally, new research indicates that long-term health risks such as developmental toxicity in infants and children, carcinogenic effects, and metabolic disorders may be exacerbated by chronic exposure, even at low levels (Du, Zhang, & Zou, 2024).

These effects highlight a public health emergency as well as an environmental crisis, particularly for communities that depend on fisheries for food and a living.

Given the ecological persistence of plastics, their increasing global production, and their clear infiltration into the food chain, addressing microplastic pollution is imperative. Understanding the pathways, impacts, and risks associated with microplastics is vital for developing effective mitigation strategies, safeguarding fisheries, and protecting human health. The need for public awareness, sustainable waste management, and policy intervention is becoming more and more evident as the scientific community continues to reveal the extent of this contamination.


## 2. Pathways of Microplastic Contamination in Aquatic Ecosystems

Microplastics enter aquatic environments through multiple interconnected routes driven by anthropogenic activities and environmental processes. These pathways explain their pervasive presence across freshwater, estuarine, and marine ecosystems.

Table 1. Sources, Types, Examples, and Pathways of Microplastics in Aquatic Environments

| Source of Microplastics       | Type      | Common Examples                                | Entry Pathway into Aquatic Systems                                         | References              |
|-------------------------------|-----------|------------------------------------------------|----------------------------------------------------------------------------|-------------------------|
| Personal Care Products        | Primary   | Microbeads in face wash, toothpaste, scrubs    | Wastewater effluents from households and cosmetic industries               | Xanthos & Walker, 2017  |
| Synthetic Textiles            | Primary   | Polyester, nylon, acrylic microfibres          | Laundry wastewater; discharged microfibres passing through WWTPs           | Sun et al., 2019        |
| Industrial Plastic Production | Primary   | Plastic pellets, nurdles, resin beads          | Spillage during transport, manufacturing discharge                         | Cole et al., 2011       |
| Tire and Road Wear            | Secondary | Tire rubber particles, road dust microplastics | Runoff during rainfall; stormwater drainage systems                        | Kole et al., 2017       |
| Plastic Packaging Waste       | Secondary | Bags, wrappers, bottles                        | Degradation and fragmentation of litter in landfills and open environments | Geyer et al., 2017      |
| Fishing and Marine Activities | Secondary | Lost nets, ropes, buoys                        | Direct loss at sea; abrasion and breakdown of fishing gear                 | Richardson et al., 2019 |

|                                |                   |                                                                   |                                                               |                      |
|--------------------------------|-------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------|
| <b>Agricultural Practices</b>  | Secondary         | Plastic mulching films, greenhouse coverings                      | Soil runoff, wind transport from agricultural fields          | Huang et al., 2020   |
| <b>Paints and Coatings</b>     | Primary/Secondary | Marine antifouling paint flakes, microplastics from boat coatings | Paint erosion into waterways; shipyard runoff                 | Turner, 2021         |
| <b>Household Plastic Waste</b> | Secondary         | Bottles, food containers, packaging                               | Urban runoff, landfill leachate, open dumping                 | Jambeck et al., 2015 |
| <b>Atmospheric Deposition</b>  | Secondary         | Airborne microfibres, fragmented particles                        | Wind transport; deposition through rainfall and dust settling | Brahney et al., 2020 |



**Figure 1.** Pathways of Microplastic generation, transport, and biological uptake in Aquatic Ecosystems. Adapted from Issac and Kandasubramanian (2021).

### **3. Impacts of Microplastics on Fisheries and Marine Organisms**

Microplastics exert multifaceted impacts on marine organisms and fisheries by affecting physiological health, behaviour, reproduction, survival, and ecological interactions. These effects ultimately compromise fishery productivity, sustainability, and seafood safety.

#### **3.1 Ingestion and Misidentification as Food**

Many marine organisms including zooplankton, bivalves, crustaceans, and fish, mistake microplastics for natural prey due to their size, shape, and buoyancy. Zooplankton were among the first recorded to ingest microplastics, demonstrating the immediate entry of these particles into the base of the marine food web (Cole et al., 2013). Fish often ingest plastics intentionally or accidentally while feeding on plankton or detritus (Lusher et al., 2013). Ingested microplastics can cause Gut blockage, false satiation, reduced appetite, nutrient dilution and decreased feeding efficiency. These effects impair growth performance and energy allocation in fish, negatively influencing population-level productivity (Wright et al., 2013).

#### **3.2 Physiological and Histopathological Damage**

Microplastic ingestion induces significant physiological stress in marine organisms. Internal abrasion and physical damage to digestive tissues have been widely documented, leading to inflammation, ulceration, and reduced digestive enzyme activity (Pedà et al., 2016). Microplastics also trigger oxidative stress by increasing the production of reactive oxygen species (ROS), causing cellular damage, immunotoxicity, and metabolic disruption (Espinosa et al., 2017). These physiological disturbances weaken overall fish fitness and increase vulnerability to diseases and predators.

#### **3.3 Bioaccumulation and Biomagnification of Toxic Contaminants**

Microplastics readily adsorb contaminants from surrounding waters, such as:

- Persistent organic pollutants (POPs)
- Polycyclic aromatic hydrocarbons (PAHs)
- Polychlorinated biphenyls (PCBs)
- Heavy metals

These contaminants accumulate on microplastic surfaces at concentrations far higher than in seawater (Rochman et al., 2013). When ingested, these pollutants transfer into the tissues of fish and shellfish.

Long-term exposure with these contaminants can cause endocrine disruption, reproductive impairment,

hepatotoxicity, neurotoxicity and hormonal imbalance. These biochemical disruptions threaten the reproductive success and survival of commercially important fish species (Bakir et al., 2014).

#### **3.4 Impacts on Reproduction and Development**

Microplastics impair reproductive success in numerous marine taxa. Studies on fish and invertebrates have shown:

- Reduced egg production
- Lower hatching success
- Developmental deformities
- Altered sex hormone levels
- Reduced larval survival (Sussarellu et al., 2016)

In bivalves, microplastics inhibited gametogenesis and energy transfer to eggs, compromising offspring viability (Sussarellu et al., 2016). For fish, exposure during early developmental stages leads to malformations and reduced growth (Barboza et al., 2018).

#### **3.5 Behavioral Alterations**

Microplastics cause behavioral changes that affect predator-prey relationships and foraging ability. Fish exposed to microplastics exhibit:

- Reduced swimming performance
- Altered feeding behavior
- Impaired predator avoidance (Mattsson et al., 2015)

Such changes diminish ecological fitness and survival, affecting recruitment in commercially important species.

#### **3.6 Habitat Degradation and Benthic Impacts**

Microplastics accumulate in sediments, affecting benthic organisms such as polychaetes, mollusks, and bottom-feeding fish. Burrowing organisms ingest sediment-bound plastics, causing reduced growth, feeding inhibition, and decreased bioturbation (Wright et al., 2013). Microplastics also alter sediment porosity, light penetration, and oxygen exchange, impairing essential benthic processes and nursery habitats critical for fisheries.

#### **3.7 Implications for Fisheries Productivity and Seafood Safety**

The cumulative effects of microplastic exposure such as reduced growth, reproductive failure, increased mortality, and habitat degradation, directly impact fish stocks. Declining fish health lowers catch quality and reduces market value (Rochman et al., 2015).

Additionally, the presence of microplastics in fish gut and tissues raises significant concerns regarding:

- Seafood contamination
- Human exposure to toxic chemicals
- Food safety compliance
- International seafood trade regulations

This issue poses a growing threat to coastal communities and global fisheries economies.

#### **4. Human Health Implications of Microplastics**

Microplastics pose a rapidly emerging threat to human health owing to their pervasive presence in seafood, drinking water, table salt, atmospheric dust, and even commonly consumed beverages. Their extremely small size (especially nano plastics,  $<1\text{ }\mu\text{m}$ ) enables them to enter and accumulate within human tissues, raising concerns about chronic toxicity, inflammation, and long-term systemic disorders (Smith et al., 2018; Sharma & Chatterjee, 2017).

##### **4.1 Dietary Exposure Through Seafood**

One of the most significant pathways for human exposure is the consumption of contaminated fish and shellfish. Marine organisms bioaccumulate microplastics and associated toxic chemicals such as persistent organic pollutants (POPs), polychlorinated biphenyls (PCBs), bisphenol-A (BPA), and heavy metals that adsorb onto the plastic surface (Rochman et al., 2013). When humans consume these species, microplastics and their chemical load can enter the digestive system and cause oxidative stress, endocrine disruption, and cellular damage (Browne et al., 2011).

##### **4.2 Gastrointestinal Accumulation and Inflammation**

Studies show that ingested microplastics may induce inflammation, disrupt gut microbial communities, and impair nutrient absorption (Wright & Kelly, 2017). Chronic exposure has been linked to intestinal barrier dysfunction, which increases the risk of inflammatory bowel disease and metabolic disorders (Lu et al., 2016). Laboratory experiments confirm that microplastics can cross the gut epithelium and accumulate in the bloodstream, liver, and kidneys (Deng et al., 2017).

##### **4.3 Chemical Toxicity and Endocrine Disruption**

Many plastic additives such as phthalates, BPA, and flame retardants act as endocrine-disrupting chemicals (EDCs). These compounds interfere with hormonal balance, reproductive function, and developmental processes (Galloway, 2015). Microplastics act as vectors, transporting EDCs into the body and releasing them during digestion, potentially contributing to hormonal imbalances, fertility decline, and thyroid dysfunction (Teuten et al., 2009).

#### **4.4 Respiratory Exposure Through Airborne Microplastics**

Microplastics are increasingly detected in indoor and outdoor air as fibres shed from clothing, household products, and degraded plastic materials (Prata, 2018). Inhalation of airborne microplastics can deposit particles deep into the lungs, causing respiratory irritation, inflammation, and potentially contributing to asthma and chronic obstructive pulmonary disease (COPD). Long-term accumulation may pose risks similar to other particulate pollutants (Gasparini et al., 2022).

#### **4.5 Potential Carcinogenic Effects**

Although evidence is still emerging, early studies suggest that nano plastics may interact with DNA, induce genotoxicity, and contribute to cancer risk through oxidative stress and chronic inflammation pathways (Yong et al., 2020). Because nano plastics can cross cell membranes, placental barriers, and even the blood-brain barrier, their long-term carcinogenic and neurotoxic potential is a growing concern.

#### **4.6 Microbial Contamination ("Plastic-Associated Pathogens")**

Microplastics serve as substrates for harmful bacteria and pathogens, forming what is known as the "*plastisphere*." Pathogens adhering to these particles may survive longer and spread more easily through marine food chains, increasing the risk of foodborne diseases in humans (Zettler et al., 2013).

### **5. Socioeconomic Consequences of Plastic Pollution and Microplastics**

Plastic pollution and microplastics not only threaten ecological integrity but also impose profound socioeconomic burdens on coastal communities, fisheries-dependent populations, and national economies. The economic losses arise from reduced fish productivity, loss of livelihood for fishers, increased public health costs, damage to tourism, and heightened management and cleanup expenditures (Beaumont et al., 2019).

#### **5.1 Decline in Fish Stocks and Loss of Livelihoods**

Microplastics impair fish health, growth, and reproduction, ultimately reducing fish populations and catch quality. These declines directly impact small-scale and commercial fishers whose income depends on sustainable fish stocks (FAO, 2020). Contaminated or deformed fish further lose market value, resulting in reduced income and economic instability for fishing communities (UNEP, 2016).

#### **5.2 Reduced Marketability of Seafood**

Seafood contaminated with microplastics or associated toxic chemicals (e.g., PCBs, BPA, PAHs) is becoming a consumer

concern worldwide. Public fear of contaminated marine products leads to market rejection, decreasing demand and causing significant economic losses for aquaculture, capture fisheries, and seafood export industries (Hantoro et al., 2019). Countries heavily dependent on seafood exports such as those in Southeast Asia face long-term trade implications if microplastic contamination levels continue to rise.

### **5.3 Increased Healthcare Expenditures**

Human exposure to microplastics through seafood consumption, drinking water, and air inhalation increases the risk of gastrointestinal disorders, respiratory diseases, endocrine disruption, and chronic illnesses (Wright & Kelly, 2017). The resulting healthcare burden including diagnostics, treatments, and long-term care disproportionately affects low-income communities with limited access to medical facilities. Rising public health costs place pressure on national healthcare systems and economic resources (Smith et al., 2018).

### **5.4 Economic Losses in Tourism and Coastal Industries**

Plastic-littered beaches, degraded coral reefs, and polluted waters diminish the aesthetic and recreational value of coastal environments. Tourism industries which contribute significantly to the GDP of many coastal nations incur heavy losses due to reduced tourist inflow, frequent beach cleanups, and declining ecosystem quality (Jang et al., 2014). Coastal degradation also affects hospitality, recreation, boating, and diving industries that rely on clean marine environments.

### **5.5 Costly Cleanup and Waste Management Burdens**

Governments spend billions annually on coastal cleanup, waste management, landfill operations, and recycling programs. These expenses divert funds from other development priorities such as infrastructure, education, and conservation (Newman et al., 2015). Developing nations face disproportionate burdens as waste management systems are often insufficient to handle increasing plastic waste, leading to leakage into rivers and oceans.

### **5.6. Threats to Food Security**

Microplastic contamination disrupts marine food webs and reduces the availability of safe, nutritious seafood. For communities where fish is the primary source of protein, this poses risks to nutritional security, increasing dependency on costly alternative food sources (Barboza & Giménez, 2015). A decline in fish quality and quantity can exacerbate poverty and malnutrition in vulnerable coastal regions.

### **5.7 Inequality and Social Vulnerability**

Marginalized and low-income coastal populations bear the brunt of plastic pollution impacts, despite contributing the least to global plastic waste. Loss of fish stocks, declining

income, limited healthcare access, and increased dependency on polluted ecosystems deepen socioeconomic inequality (UNEP, 2016). Women working in fish processing sectors and local markets are also disproportionately affected due to reduced product quality and safety concerns.

## **6. Management Practices for Mitigating Plastic Pollution and Microplastics**

Effective management of plastic pollution and microplastics requires integrated, multi-level, and science-based strategies, combining regulatory action, technological innovation, community engagement, and circular-economy approaches. Because plastics persist for centuries and microplastics are nearly impossible to remove from aquatic systems once dispersed, prevention-focused management is more effective than remediation (UNEP, 2021).

### **6.1 Policy and Regulatory Interventions**

Governments worldwide are adopting stringent policies aimed at reducing plastic waste generation, promoting recycling, and restricting harmful single-use plastics. Key instruments include:

- a) Extended Producer Responsibility (EPR), which shifts waste-management responsibility to manufacturers (OECD, 2016).
- b) Bans on microbeads in personal care products, successfully implemented in the USA, UK, Canada, and India (Xanthos & Walker, 2017).
- c) Plastic Bag Bans/Levies, which have significantly reduced consumption in over 60 countries (Nielsen et al., 2019).

Regulatory frameworks ensure compliance, reduce waste leakage, and foster accountability across supply chains.

### **6.2 Improved Waste Management Infrastructure**

Weak waste management systems are among the leading causes of plastic leakage into rivers and oceans. Strengthening these systems includes:

- a) Enhanced collection networks, particularly in rural and coastal regions.
- b) Upgraded recycling facilities capable of processing mixed plastics and contaminated waste.
- c) Adoption of waste-to-energy technologies, which convert non-recyclable plastics to energy with controlled emissions (Singh et al., 2017).

Integrated waste management systems in countries like Japan and Germany show high success rates through segregation, mechanical recycling, and energy recovery.

### **6.3 Circular Economy and Sustainable Material Alternatives**

Transitioning from a “take–make–dispose” model toward a circular economy reduces both plastic production and waste. Strategies include:

- a) Biodegradable and compostable alternatives, such as bioplastics made from starch, cellulose, or algae (Kershaw, 2020).
- b) Material reuse and refill systems, replacing single-use packaging with durable options.
- c) Eco-design principles encouraging production of plastics that are easier to recycle and have lower environmental impact.

Businesses adopting circular models contribute to long-term pollution prevention and resource efficiency.

#### **6.4 Cleanup and Restoration Initiatives**

Although prevention is crucial, removing existing plastic waste is also necessary.

- a) Coastal cleanups, including the International Coastal Cleanup (ICC), have removed millions of kilograms of debris annually (Ocean Conservancy, 2020).
- b) River barrier systems such as the “Interceptor” (The Ocean Cleanup Project) prevent plastics from reaching oceans.
- c) Bioremediation approaches, using microbes or fungi capable of degrading plastic polymers, offer promising long-term solutions (Shah et al., 2008).
- d) However, cleanup efforts primarily address macro plastics; microplastics are far more difficult to remove once dispersed.

#### **6.5 Monitoring, Research, and Technological Innovations**

Science-based management requires:

- a) Standardized monitoring protocols for microplastics in water, sediment, and biota (Gago et al., 2016).
- b) Advanced filtration systems in wastewater treatment plants capable of capturing microfibers and microbeads (Sun et al., 2019).
- c) Innovative sensors and imaging technologies for microplastic detection and quantification.

Research investments help improve understanding of microplastic toxicity, transport, and long-term ecological effects.

#### **6.6 Community Awareness and Behavioural Change**

Public participation is essential for reducing plastic pollution.

- a) Education programs on waste segregation, recycling, and sustainable consumption significantly reduce littering behaviour (Willis et al., 2018).

- b) Citizen-science initiatives, such as beach monitoring and plastic audits, foster engagement and data collection.
- c) Policy acceptance increases when citizens understand the importance of reduction strategies.

Community-driven change magnifies the impact of national policies.

#### **6.7 International Collaboration and Governance**

Plastic pollution is a transboundary issue, requiring coordinated global responses.

- a) International agreements such as the UN Plastics Treaty (in negotiation) aim to regulate global plastic production and waste (UNEP, 2021).
- b) Regional frameworks like the EU Marine Strategy Framework Directive enforce strict pollution controls.

Such cooperative strategies ensure uniform standards, reduce global leakage, and support low-income countries with technological and financial assistance.

#### **References**

- Bakir, A., Rowland, S. J., & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. *Environmental Pollution*, 185, 16–23.
- Barboza, L. G. A., & Giménez, B. C. G. (2015). Microplastics in the marine environment: Current trends and future perspectives. *Marine Pollution Bulletin*, 97(1–2), 5–12.
- Barboza, L. G. A., Vieira, L. R., Branco, V., Carvalho, C., Carvalho, F., & Guilhermino, L. (2018). Microplastics cause neurotoxicity, oxidative damage and energy-related changes in zebrafish larvae. *Science of the Total Environment*, 673, 89–97.
- Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., ... Wyles, K. J. (2019). Global ecological, social, and economic impacts of marine plastic. *Marine Pollution Bulletin*, 142, 189–195.
- Brahney, J., Hallerud, M., Heim, E., Hahnberger, M., & Sukumaran, S. (2020). Plastic rain in protected areas of the United States. *Science*, 368(6496), 1257–1260.
- Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of microplastic on shorelines worldwide: Sources and sinks. *Environmental Science & Technology*, 45(21), 9175–9179.
- Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2011). Ingested microscopic plastic translocates to the circulatory

system of the mussel *Mytilus edulis*. *Environmental Science & Technology*, 42(13), 5026–5031.

- Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. *Marine Pollution Bulletin*, 62(12), 2588–2597.
- Cole, M., Lindeque, P., Fileman, E., Clark, J., Lewis, C., Halsband, C., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. *Environmental Science & Technology*, 47(12), 6646–6655.
- Deng, Y., Zhang, Y., Lemos, B., & Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks. *Scientific Reports*, 7, 46687.
- Du, X., Zhang, S., & Zou, E. (2024). Marine microplastics and infant health. *International Journal of Environmental Health*, 12(3), 214–230.
- Espinosa, C., Cuesta, A., Esteban, M. Á. (2017). Effects of dietary polyvinyl chloride microparticles on general health, immune status and expression of several genes in gilthead seabream. *Fish & Shellfish Immunology*, 68, 251–261.
- FAO. (2020). *The State of World Fisheries and Aquaculture 2020*. Food and Agriculture Organization of the United Nations.
- Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. *Nature Ecology & Evolution*, 1(5), 1–8.
- Gago, J., Carretero, O., Filgueiras, A. V., & Viñas, L. (2016). Standardised protocol for monitoring microplastics in seawater. *Journal of Marine Science and Engineering*, 4(4), 75.
- Galloway, T. S. (2015). Micro- and nano-plastics and human health. *Marine Anthropogenic Litter*, 343–366.
- Gasparini, A., et al. (2022). Airborne microplastics: A review of sources, detection, and health risks. *Environmental Pollution*, 292, 118299.
- Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. *Science Advances*, 3(7), e1700782.
- Hantoro, I., Lohr, A. J., Van Belleghem, F., Widianarko, B., & Ragas, A. M. J. (2019). Microplastics in coastal areas and seafood: Implications for food safety. *Food Additives & Contaminants*, 36(5), 674–711.
- Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2020). Agricultural plastic mulching and its impacts on soil microplastic pollution: A review. *Environmental Pollution*, 260, 114096.
- Issac, M. N., & Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. *Environmental Science and Pollution Research*, 28(16), 19544–19562.
- Jambeck, J. R., Geyer, R., Wilcox, C., et al. (2015). Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768–771.
- Jang, Y. C., Hong, S., Lee, J., Lee, M. J., & Shim, W. J. (2014). Estimation of lost tourism revenue in Geoje Island from the 2011 marine debris pollution event in South Korea. *Marine Pollution Bulletin*, 81(1), 49–54.
- Johnson, D., & Thompson, R. C. (2022). Human health risks from microplastic exposure: Emerging insights. *Journal of Environmental Toxicology*, 18(2), 88–102.
- Kershaw, P. J. (2020). *Biodegradable plastics and marine microplastic pollution*. UNEP Report.
- Kole, P. J., Löhr, A. J., Van Belleghem, F. G., & Ragas, A. M. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment. *International Journal of Environmental Research and Public Health*, 14(10), 1265.
- Lebreton, L. C. M., van der Zwet, J., Damsteeg, J. W., Slat, B., Andrade, A., & Reisser, J. (2017). River plastic emissions to the world's oceans. *Nature Communications*, 8, 15611.
- Lusher, A. L., McHugh, M., & Thompson, R. C. (2013). Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish. *Marine Pollution Bulletin*, 67(1–2), 94–99.
- Lu, L., Wan, Z., Luo, T., Fu, Z., & Jin, Y. (2016). Polystyrene microplastics induce gut microbiota dysbiosis and metabolic toxicity in mice. *Scientific Reports*, 6, 33982.
- Mattsson, K., Ekvall, M. T., Hansson, L. A., Linse, S., Malmendal, A., & Cedervall, T. (2015). Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. *PLoS ONE*, 10(7), e0127305.
- Newman, S., Watkins, E., Farmer, A., ten Brink, P., & Schweitzer, J. P. (2015). *The economics of marine litter*. In M. Bergmann, L. Gutow, & M. Klages (Eds.), *Marine Anthropogenic Litter* (pp. 367–394). Springer.
- Nielsen, T. D., Holmberg, K., & Stripple, J. (2019). Need a bag? A review of public policies on plastic carrier bags – Where, how, and to what effect? *Waste Management*, 87, 428–440.
- Ocean Conservancy. (2020). *International Coastal Cleanup Report 2020*.
- OECD. (2016). *Extended Producer Responsibility (EPR) Guidance for Governments*. Organisation for Economic Co-operation and Development.
- Pedà, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., & D'Angelo, G. (2016). Intestinal alterations in European sea bass exposed to microplastics: Preliminary results. *Environmental Pollution*, 212, 251–256.
- Prata, J. C. (2018). Airborne microplastics: Consequences to human health? *Environmental Pollution*, 234, 115–126.

- Richardson, K., Haynes, D., Talouli, A., & Donoghue, M. (2019). Marine litter and fisheries: Impacts and management. *Reviews in Fisheries Science & Aquaculture*, 27(3), 267–291.
- Rochman, C. M., et al. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. *Scientific Reports*, 3, 3263.
- Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., ... & Teh, S. J. (2015). Anthropogenic debris in seafood: Plastic debris and fibers from fish and bivalves sold for human consumption. *Scientific Reports*, 5, 14340.
- Sharma, S., & Chatterjee, S. (2017). Microplastic pollution, a threat to marine ecosystem and human health: A short review. *Environmental Science and Pollution Research*, 24, 21530–21547.
- Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. *Biotechnology Advances*, 26(3), 246–265.
- Singh, M. Conservation of Indigenous Fish Species in Himalayan Rivers: Challenges and Strategies.
- Singh, R. K., Ruj, B., Sadhukhan, A. K., Gupta, P., & Saha, S. K. (2017). Waste-to-energy potential of plastic-derived oil. *Energy Conversion and Management*, 148, 1118–1127.
- Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. *Current Environmental Health Reports*, 5(3), 375–386.
- Smith, L. C., Jones, M. E., & Patel, A. R. (2024). Impact of microplastics on human health through the consumption of seafood: A review. *Journal of Clinical and Environmental Medicine*, 9(1), 015–019.
- Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., ... & Huvet, A. (2016). Oyster reproduction is affected by exposure to polystyrene microplastics. *Proceedings of the National Academy of Sciences*, 113(9), 2430–2435.
- Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence, and removal. *Water Research*, 152, 21–37.
- Teuten, E. L., et al. (2009). Transport and release of chemicals from plastics to the environment and wildlife. *Philosophical Transactions of the Royal Society B*, 364, 2027–2045.
- Turner, A. (2021). Marine pollution from antifouling paint particles: A review. *Marine Pollution Bulletin*, 173, 112978.
- UNEP. (2016). *Marine plastic debris and microplastics: Global lessons and research to inspire action and guide policy change*. United Nations Environment Programme.
- UNEP. (2021). *From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution*. United Nations Environment Programme.
- Willis, K., Maureaud, C., Wilcox, C., & Hardesty, B. D. (2018). How successful are waste abatement campaigns and government policies at reducing plastic waste into the marine environment? *Marine Policy*, 96, 243–249.
- Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: A review. *Environmental Pollution*, 178, 483–492.
- Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? *Environmental Science & Technology*, 51(12), 6634–6647.
- Xanthos, D., & Walker, T. R. (2017). International policies to reduce microplastic pollution from single-use plastics (plastic bags and microbeads): A review. *Marine Pollution Bulletin*, 118(1–2), 17–26.
- Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. *International Journal of Environmental Research and Public Health*, 17(5), 1509.
- Yu, R.-S., & Singh, S. (2023). Microplastic pollution: Threats and impacts on global marine ecosystems. *Sustainability*, 15(17), Article 13252.
- Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: Microbial communities on plastic marine debris. *Environmental Science & Technology*, 47(13), 7137–7146.

